
ATTACKING VXWORKS
FROM STONE AGE TO INTERSTELLAR

Syscan+360 Beijing 10/22/2015 YANNICK FORMAGGIO, WENZHE ZHU, RICHARD HSU & ERIC LIU

ABOUT ME

Yannick Formaggio

Security Researcher at Istuary Innovation Labs

@TheLumberJhack || yannickformaggio on LinkedIn

Eric Liu
Lead Security Researcher

With help from 朱文哲 (Wenzhe Zhu),
Richard Hsu

2

AGENDA

1.  Introduction to VxWorks & previous papers

2.  Inside VxWorks:
Memory management & protections

3.  From fuzzing to exploit: RPC Integer Overflow
RCE

3

INTRODUCTION

4

WHAT’S VXWORKS?

  #1 Embedded devices RTOS

  Developed by Wind River

  Claimed > 1.5 billions devices

  Supports lot of CPU architectures

WHAT’S VXWORKS?

1987
•  First release
•  32 bits processing

1990’s
•  VxWorks 5 released
•  1st RTOS w/ network stack

2000’s
•  VxWorks 6.x (12-2004)
•  Security improvements (RTPs, no more task shared memory)

2014
•  VxWorks 7.x (02-2014)
•  64bits, more security improvements

“

”

The Real-Time Operating System for the Internet of
Things
Powering billions of intelligent devices, VxWorks®
delivers an industry-leading combination of scalability,
safety, security, and virtualization capabilities to meet
next-generation requirements.

Windriver VxWorks product

7

SOME CUSTOMERS

8

SOME STATS

9

VXWORKS & SECURITY

Source: http://www.cvedetails.com/product/15063/Windriver-Vxworks.html?vendor_id=95
10

VXWORKS & SECURITY

  Wind River treats VxWorks security seriously
  Partnership with McAffee in Feb 2011

Source: http://www.windriver.com/news/press/pr.html?ID=8801

VXWORKS & SECURITY

  Wind River treats VxWorks security seriously
  Partnership with McAffee in Feb 2011

  6.x introduced some memory protections

  7.x improved way further:
  Digitally signed modules (X.509)

  Encryption

  Centralized user database

  Password management (SHA-256 algorithm)

  Ability to create/delete users at run time

  Encrypted data storage

PREVIOUS RESEARCH PAPERS
& INSPIRATIONS

PREVIOUS RESEARCH & INSPIRATIONS

2010: “Shiny Old VxWorks Vulnerabilities”

HD Moore

4 Metasploit modules targeting WDB RPC

  (Re)sources on pudn.com …

  Weak password hash entropy
 è rainbow table containing around 200k hashed

passwords

14

PREVIOUS RESEARCH & INSPIRATIONS

“Reverse Engineering VxWorks Firmware: WRT54Gv8”
/dev/ttyS0

15

PREVIOUS RESEARCH & INSPIRATIONS

2011: “Digging Inside the VxWorks OS and Firmware

The Holistic Security”
Aditya K Sood (0kn0ck) – SecNiche Security Lab

  WDB debugging Interface (again)

  OS Security

16

INSIDE VXWORKS
MEMORY LAYOUT & PROTECTIONS

17

X86 MEMORY LAYOUT:
UPPER MEMORY

IDT (2KB)
Addresss
0x0000 + LOCAL_MEM_LOCAL_ADRS

GDT + 0x800

SM Anchor + 0x1100

Boot Line + 0x1200

Exception message + 0x1300

FD DMA Area + 0x2000

+ 0x5000

(no memory) + 0xa0000

Initial Stack + 0x100000

System Image
+ 0x108000
_end

WDB Memory Pool

Interrupt stack

System Memory Pool
… sysMemTop()

Available

Reserved

KEY

18

X86 UPPER MEMORY IDT (2KB)
Addresss
0x0000 + LOCAL_MEM_LOCAL_ADRS

GDT + 0x800

SM Anchor + 0x1100

Boot Line + 0x1200

Exception message + 0x1300

FD DMA Area + 0x2000

+ 0x5000

(no memory) + 0xa0000

Initial Stack + 0x100000

System Image
+ 0x108000
_end

WDB Memory Pool

Interrupt stack

System Memory Pool
… sysMemTop()

Available

Reserved

KEY

  Interrupt Descriptor/
Vector Table

19

X86 UPPER MEMORY IDT (2KB)
Addresss
0x0000 + LOCAL_MEM_LOCAL_ADRS

GDT + 0x800

SM Anchor + 0x1100

Boot Line + 0x1200

Exception message + 0x1300

FD DMA Area + 0x2000

+ 0x5000

(no memory) + 0xa0000

Initial Stack + 0x100000

System Image
+ 0x108000
_end

WDB Memory Pool

Interrupt stack

System Memory Pool
… sysMemTop()

Available

Reserved

KEY

  Interrupt Descriptor/
Vector Table
  ASCII string for fatal
exception message

20

X86 UPPER MEMORY IDT (2KB)
Addresss
0x0000 + LOCAL_MEM_LOCAL_ADRS

GDT + 0x800

SM Anchor + 0x1100

Boot Line + 0x1200

Exception message + 0x1300

FD DMA Area + 0x2000

+ 0x5000

(no memory) + 0xa0000

Initial Stack + 0x100000

System Image
+ 0x108000
_end

WDB Memory Pool

Interrupt stack

System Memory Pool
… sysMemTop()

Available

Reserved

KEY

  Interrupt Decriptor/
Vector Table
  ASCII string for fatal
exception message
  VxWorks image entry
point

21

X86 UPPER MEMORY IDT (2KB)
Addresss
0x0000 + LOCAL_MEM_LOCAL_ADRS

GDT + 0x800

SM Anchor + 0x1100

Boot Line + 0x1200

Exception message + 0x1300

FD DMA Area + 0x2000

+ 0x5000

(no memory) + 0xa0000

Initial Stack + 0x100000

System Image
+ 0x108000
_end

WDB Memory Pool

Interrupt stack

System Memory Pool
… sysMemTop()

Available

Reserved

KEY

  Interrupt Descriptor/
Vector Table
  ASCII string for fatal
exception message
  VxWorks image entry
point
  WDB shared memory

22

MEMORY PROTECTIONS

1.  Stack protections

2.  Heap protections

23

MEMORY PROTECTION:

Task and interrupt stack overrun
and underrun protections

Stack pages

Stack

Start

Stop

24

MEMORY PROTECTION

Non-executable task stacks & Non-
writable Text Segment

Program pages

Read Only

Raw Data
r+w

.T
E

X
T

.DA
TA

25

MEMORY PROTECTION

-r-w-x

Address Space

0x00000000

NULL Pointer usage/dereference
detection

26

MEMORY PROTECTION
HEAP BLOCK OVERRUN DETECTION / USAGE TRACKING &
LEAKAGE DETECTION

27

FROM FUZZING TO EXPLOIT

28

FUZZING TARGETS

 Network protocols:
  Portmap (RPC)

  FTP

  TFTP

  NTP

  …

29

FUZZING

  Used Sulley fuzzing framework

  Problem: no accurate crash detection available

  Solution: using WdbRPC

30

WHAT’S WDB RPC?

  Debugging Interface

  Service running on port UDP/17185

  Based on SUN-RPC protocol

  Provides direct access to system memory

31

WDB PROTOCOL V2

Target Server Target Agent
WDB

Shell

Debugger

Browser

Other
tools

HOST VxWorks

WTX

32

OS

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 5.X

HOST TARGET

CALL
REPLY

33

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 5.X

WDB_TARGET_CONNECT

HOST TARGET

CALL
REPLY

34

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 5.X

WDB_TARGET_CONNECT

HOST TARGET

WDB_TARGET_CONNECT

CALL
REPLY

35

1. Connect

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 5.X

WDB_TARGET_CONNECT

HOST TARGET

WDB_TARGET_CONNECT

WDB_FUNC_CALL CALL
REPLY

36

1. Connect

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 5.X

WDB_TARGET_CONNECT

HOST TARGET

WDB_TARGET_CONNECT

WDB_FUNC_CALL

WDB_FUNC_CALL
CALL
REPLY

37

1. Connect

2. Set task breakable

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 5.X

WDB_TARGET_CONNECT

HOST TARGET

WDB_TARGET_CONNECT

WDB_FUNC_CALL

WDB_FUNC_CALL
CALL
REPLY

WDB_CONTEXT_SUSPEND

WDB_CONTEXT_SUSPEND

38

1. Connect

2. Set task breakable

3. Suspend execution

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 5.X

WDB_TARGET_CONNECT

HOST TARGET

WDB_TARGET_CONNECT

WDB_FUNC_CALL

WDB_FUNC_CALL
CALL
REPLY

WDB_CONTEXT_SUSPEND

WDB_CONTEXT_SUSPEND

WDB_EVENTPOINT_ADD

WDB_EVENTPOINT_ADD

39

1. Connect

2. Set task breakable

3. Suspend execution

4. Set breakpoint

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 5.X

WDB_TARGET_CONNECT

HOST TARGET

WDB_TARGET_CONNECT

WDB_FUNC_CALL

WDB_FUNC_CALL
CALL
REPLY

WDB_CONTEXT_SUSPEND

WDB_CONTEXT_SUSPEND

WDB_EVENTPOINT_ADD

WDB_EVENTPOINT_ADD

WDB_CONTEXT_CONT

WDB_CONTEXT_CONT

40

1. Connect

2. Set task breakable

3. Suspend execution

4. Set breakpoint/attach

5. Continue Execution

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 6.X

WDB_TARGET_CONNECT2

HOST TARGET

WDB_TARGET_CONNECT2

WDB_FUNC_CALL

WDB_FUNC_CALL
CALL
REPLY

WDB_EVALUATE_GOPHER

WDB_EVALUATE_GOPHER

WDB_EVALUATE_GOPHER

WDB_EVALUATE_GOPHER

…
41

More info on Gopher

1. Connect

2. Set task breakable

3. Set breakpoint/attach

STEPS FOR PROCESS MONITORING USING WDB:
VXWORKS 6.X

CALL
REPLY

42

WDB_TARGET_CONNECT2

HOST TARGET

WDB_TARGET_CONNECT2

WDB_FUNC_CALL

WDB_FUNC_CALL

WDB_EVALUATE_GOPHER

WDB_EVALUATE_GOPHER …

WDB_MEM_READ

WDB_MEM_READ

 Host reads the pointed
memory addresses

CRASH DETECTION

  Target sends event
notification

43
HOST TARGET

EVENT NOTICATION

CRASH DETECTION

  Target sends event
notification

  Host acknowledges

44
HOST TARGET

EVENT NOTICATION

WDB_EVENT_GET

CRASH DETECTION

1)  Target sends event
notification

2)  Host acknowledges

3)  Host ask more
information (registers
content, memory
area, …)

45
HOST TARGET

EVENT NOTICATION

WDB_EVENT_GET

WDB_EVENT_GET

WDB_REGS_GET
WDB_MEM_READ

WDBRPC FRAMEWORK

  Python 2.7

  Supports VxWorks 5.x and 6.x

  Partially implements WDBRPC protocol

  Implements a basic remote debugger: WdbDbg

46

WDBRPC FRAMEWORK

  Some externals dependencies:
  PyElfTools: reads the imports from the VxWorks Image

  Capstone Engine: disassemble code around crash area

47

FUZZING

48

Sulley
Fuzzer

VxWorks
Target

Test cases

VxWorks Process
Monitor

PED RPC WDB RPC

WdbDbg

DEMO

49

RESULTS

50

CRASH ANALYSIS
  Portmap task crashed many times on the same RPC field: credential flavor

  When set to a negative value => PC is set to arbitrary memory value

51

CRASH ANALYSIS

52

CRASH ANALYSIS

53

CRASH ANALYSIS

54

CRASH ANALYSIS

55

CRASH ANALYSIS

56

O_o

CRASH ANALYSIS

57

CRASH ANALYSIS

58

CVE-2015-7599

  Vuln reported to Wind River on July 22nd and acknowledged on
23rd

  Confirmed August 11th Wind River is providing patches

  Every VxWorks customers should check the Knowledge Library for
details

  On Sept 9th 2015 I’ve been authorised to disclose details

59

AFFECTED VERSIONS

HOW TO EXPLOIT?

  Integer overflow leading to RCE

  Heap spray to place the shellcode

  Compute credential flavor value

  Jump into shellcode directly
  all memory protections bypassed/defeated

  backdoor account set up

61

EXPLOITATION DEMO

62

WHAT ABOUT A REAL TARGETS?

  Schneider Modicon
Quantum PLC runs VxWorks
and has port 111 open
(
https://
www.digitalbond.com/tools/
basecamp/schneider-
modicon-quantum/)

63

… BUT

  Currently shipped module: portmap unavailable
by default

  Previous releases have a patch now

SOME NUMBERS

  Schneider Modicon Quantum PLC runs VxWorks 5.4 and has port 111 open

65

FUN FACT

66

MORE BUGS FOUND DURING FUZZING

FTP server is susceptible
to ring buffer overflow
when accessed at a high
speed

67

MORE BUGS FOUND DURING FUZZING

FTP server crashes when
received specially
crafted username
è network stack down

68

CONCLUSION

  Wind River takes VxWorks’ security seriously

  Implemented a lot of memory protections

  Being defeated by a simple integer overflow bug

  And now we have a debugging framework to find more!

69

FUTURE WORK ?

  VxWorks 7?

  More complete WDBRPC protocol and Wdb over serial
implementation

  Continuing to find bugs

70

QUESTIONS

?
71

THANKS !

CODE RELEASE

  The WdbDbg framework will be available here:
https://bitbucket.org/istuarysecurityteam/wdbdbg

  Exploit code will not be released unless explicit
authorisation given

73

LINKS

http://www.vxdev.com/docs/vx55man/tornado-api/wdbpcl/wdb.html

http://www.uio.no/[...]/vxworks_architecture_supplement_6.2.pdf

http://www.uio.no/[...]/vxworks_kernel_programmers_guide_6.2.pdf

http://cimsol-mc.sourceforge.net/files/vxworks/VxWorks60.pdf

Digging Inside the VxWorks OS and Firmware The Holistic Security

HD Moore - Fun with VxWorks

74

